Abstract
A neural-network architecture of multifaceted planar interconnection holograms and optoelectronic neurons is analyzed. Various computer-generated hologram techniques are analyzed and tested for their ability to produce an interconnection hologram with high-accuracy interconnects and high diffraction efficiency. A new technique is developed by using the Gerchberg–Saxton algorithm, followed by a random-search error minimization that produces the highest interconnect accuracy and the highest diffraction efficiency of the techniques tested. Analysis of the system shows that the hologram has the capacity to connect 5000 neuron outputs to 5000 neuron inputs with bipolar synapses and that the encoded synaptic weights have an accuracy of ~5 bits. A simple feedback system is constructed and demonstrated.
© 1992 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (6)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (2)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (7)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription