Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Response of two-phase droplets to intense electromagnetic radiation

Not Accessible

Your library or personal account may give you access

Abstract

The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii = 37, 55, and 80 μm) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

© 1993 Optical Society of America

Full Article  |  PDF Article
More Like This
Explosive boiling of water droplets irradiated with intense CO2-laser radiation: numerical experiments

Yu. E. Geints, A. A. Zemlyanov, and R. L. Armstrong
Appl. Opt. 33(24) 5805-5810 (1994)

Investigation of laser-induced destruction of droplets by acoustic methods

A. A. Zemlyanov, Yu. E. Geints, A. M. Kabanov, and R. L. Armstrong
Appl. Opt. 35(30) 6062-6068 (1996)

Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds

Ronald G. Pinnick, Abhijit Biswas, Robert L. Armstrong, S. Gerard Jennings, J. David Pendleton, and Gilbert Fernández
Appl. Opt. 29(7) 918-925 (1990)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.