Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques

Not Accessible

Your library or personal account may give you access

Abstract

The possibilities for using the pulsed time-of-flight (TOF) laser radar technique for hot refractory lining measurements are examined, and formulas are presented for calculating the background radiation collected, the achievable signal-to-noise ratio (SNR), and the measurement resolution. An experimental laser radar device is presented based on the use of a laser diode as a transmitter. Results obtained under real industrial conditions show that a SNR of 10 can be achieved at measurement distances of up to 15–20 m if the temperature of the converter is 1400 °C and the peak power of the laser diode used is 10 W. The single-shot resolution is about 60 mm (sigma value), but it can be improved to millimeter range by averaging techniques over a measurement time of 0.5 s. A commercial laser radar profiler based on the experimental laser radar device is also presented, and results obtained with it in real measurement situations are shown. These measurements indicate that it is possible to use the pulsed TOF laser radar technique in demanding measurement applications of this kind to obtain reliable data on the lining wear rate of a hot converter in a steel works.

© 1993 Optical Society of America

Full Article  |  PDF Article
More Like This
Application of lidar techniques to time-of-flight range imaging

Refael Whyte, Lee Streeter, Michael J. Cree, and Adrian A. Dorrington
Appl. Opt. 54(33) 9654-9664 (2015)

Improved time-of-flight range acquisition technique in underwater lidar experiments

Zao Cheng, Kecheng Yang, Jiefei Han, Yiyu Zhou, Liying Sun, Wei Li, and Min Xia
Appl. Opt. 54(18) 5715-5725 (2015)

Single-photon laser ionization time-of-flight mass spectroscopy detection in molecular-beam epitaxy: application to As4, As2, and Ga

Paul G. Strupp, April L. Alstrin, Russell V. Smilgys, and Stephen R. Leone
Appl. Opt. 32(6) 842-846 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (20)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.