Abstract
The noise in single-shot coherent anti-Stokes Raman (CARS) spectroscopy that employs a broadband modeless dye laser (MDL) is examined and the results are compared with those of a conventional dye laser. The noise of the dye-laser, the nonresonant CARS, and the resonant N2 CARS signals are determined. The use of a MDL is shown to result in substantially reduced CARS noise when the CARS signal is generated with a single-mode pump laser, but only a marginal reduction of noise is observed with a multimode pump source The noise measurements are compared with theoretical predictions that are based on models that assume modes of random amplitudes and phases in the multimode laser sources. The combination of a MDL and a single-mode pump laser is shown to increase the precision of single-shot N2 CARS temperature measurements.
© 1994 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (4)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (5)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription