Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Thermal modeling of solid nonfocusing pump-light collectors used for diode-pumped Nd:YAG lasers

Not Accessible

Your library or personal account may give you access

Abstract

We have developed a thermal model for the determination of the temperature distribution of a diode side-pumped Nd:YAG laser in which the laser rod is fixed in a solid nonfocusing (prismatic) pump-light collector. The model permits the temperature to be determined as a function of both spatial and temporal parameters for a wide range of boundary conditions and different collector materials. Interferometric measurements were carried out to obtain the averaged rod temperatures for comparison with results from the model and to fix a convective-cooling rate for ambient air that best fits the experimental results. Two cases were studied both theoretically and experimentally with artificial sapphire and BK7 as prism materials, and good agreement was achieved between model and experimental results. The use of artificial sapphire as the prism material reduces by a factor of ~7 both the rod temperature and the warm-up time compared with BK7 glass. Peltier cooling of the underside of the BK7 glass prism yields thermal characteristics of the device that are similar to those devices with sapphire prisms. Calculations also show that the thermal properties of the fixant are not critical for moderate fixant thermal diffusivities (i.e., κf > 10−8–10−7 m2 s−1), thus the choice of an appropriate fixant can be based on its mechanical and index-matching properties alone.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Theoretical modeling of a diode-pumped Nd:YAG laser with a solid nonfocusing pump light collector

Stuart D. Jackson and James A. Piper
Appl. Opt. 33(12) 2273-2283 (1994)

Encapsulated rod for efficient thermal management in diode-side-pumped Nd:YAG lasers

Stuart D. Jackson and James A. Piper
Appl. Opt. 35(15) 2562-2565 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.