Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Interferometric laser imaging for droplet sizing: a method for droplet-size measurement in sparse spray systems

Not Accessible

Your library or personal account may give you access

Abstract

A full-field, time-resolved interferometric method for the characterization of sparse, polydisperse spray systems is reported. The method makes use of the angular intensity oscillations in the wide-angle forward-scatter region. A pulsed laser is used to illuminate a planar sheet through the spray, which is imaged, out of focus, from the 45° direction. The image consists of a set of out-of-focus spots, each of which represents an individual droplet, and superimposed on which is a set of fringes corresponding to the angular intensity oscillations of that droplet. Macrophotographic recording with high-resolution digitization for image analysis provides a full-field capability. The spatial frequency of fringes on each spot in the image plane is dependent on the diameter of the corresponding droplet in the object plane, and a simple geometric analysis is shown to be appropriate for the calculation of the spatial frequency of fringes as a function of droplet size. Images are analyzed automatically by a software suite that uses Gaussian blur, Canny edge detection, and Hough transforms to locate individual droplets in the image field. Fringe spatial frequency is then determined by least-squares fitting to a Chirp function. The method is applicable to droplets with diameters in the range of several millimeters to several hundred millimeters and number densities of up to 103 to 104. The accuracy of the method for droplet-size determination has been evaluated by measurements of monodisperse aerosols of known droplet size, and measurements of droplet-size distribution in a polydisperse aerosol produced by a gasoline fuel injector are also presented. An extension of the method, using high-speed photography to measure two components of velocity in addition to size and position, is discussed. A two-wavelength approach may also offer the capability to measure the concentration of model fuel additives in droplets, and the results of a feasibility study are described.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Interferometric laser imaging for droplet-size measurement in spray

Yarui Ma, Jiwen Cui, and Jiubin Tan
Appl. Opt. 61(18) 5496-5506 (2022)

Interferometric laser imaging for droplet sizing revisited: elaboration of transfer matrix models for the description of complete systems

Huanhuan Shen, Sébastien Coëtmellec, Gérard Gréhan, and Marc Brunel
Appl. Opt. 51(22) 5357-5368 (2012)

Reliable LIF/Mie droplet sizing in sprays using structured laser illumination planar imaging

Yogeshwar Nath Mishra, Elias Kristensson, and Edouard Berrocal
Opt. Express 22(4) 4480-4492 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.