Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Cloud-droplet-size distribution from lidar multiple-scattering measurements

Not Accessible

Your library or personal account may give you access

Abstract

A method for calculating droplet-size distribution in atmospheric clouds is presented, based on measurement of laser backscattering and multiple scattering from water clouds. The lidar uses a Nd:YAG laser that emits short pulses at a moderate repetition rate. The backscattering, which is composed mainly of single scattering, is measured with a detector pointing along the laser beam. The multiple scattering, which is mainly double scattering, is measured with a second detector, pointing at a specified angle to the laser beam. The domain of scattering angles that contribute to the double-scattering signal increases monotonically as the pulse penetrates the cloud. The water droplets within the probed volume are assumed to have a constant size distribution. Hence, from the double-scattering-measured signal as a function of penetration depth within the cloud, the double-scattering phase function of the scattering volume is derived. Inverting the phase function results in a cloud-droplet-size distribution in the form of a log-normal function.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation

Gilles Roy, Luc Bissonnette, Christian Bastille, and Gilles Vallée
Appl. Opt. 38(24) 5202-5211 (1999)

Polarization anisotropy in lidar multiple scattering from atmospheric clouds

S. R. Pal and A. I. Carswell
Appl. Opt. 24(21) 3464-3471 (1985)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.