Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Hyperbolic damped-wave models for transient light-pulse propagation in scattering media

Not Accessible

Your library or personal account may give you access

Abstract

Transient optical transport in highly scattering media such as tissues is usually modeled as a diffusion process in which the energy flux is assumed proportional to the fluence (intensity averaged over all solid angles) gradients. Such models exhibit an infinite speed of propagation of the optical signal, and finite transmission values are predicted even at times smaller than those associated with the propagation of light. If the hyperbolic, or wave, nature of the complete transient radiative transfer equation is retained, the resulting models do not exhibit such drawbacks. Additionally, the hyperbolic equations converge to the solution at a faster rate, which makes them very attractive for numerical applications in time-resolved optical tomography.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media

Zhixiong Guo and Sunil Kumar
Appl. Opt. 40(19) 3156-3163 (2001)

Analysis of short-pulse laser photon transport through tissues for optical tomography

Mohamed Sakami, Kunal Mitra, and Tuan Vo-Dinh
Opt. Lett. 27(5) 336-338 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved