Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Liquid-crystal projection image depixelization by spatial phase scrambling

Not Accessible

Your library or personal account may give you access

Abstract

A technique that removes the pixel structure by scrambling the relative phases among multiple spatial spectra is described. Because of the pixel structure of the liquid-crystal-display (LCD) panel, multiple spectra are generated at the Fourier-spectrum plane (usually at the back focal plane of the imaging lens). A transparent phase mask is placed at the Fourier-spectrum plane such that each spectral order is modulated by one of the subareas of the phase mask, and the phase delay resulting from each pair of subareas is longer than the coherent length of the light source, which is approximately 1 μm for the wideband white light sources used in most of LCD’s. Such a phase-scrambling technique eliminates the coherence between different spectral orders; therefore, the reconstructed images from the multiple spectra will superimpose incoherently, and the pixel structure will not be observed in the projection image.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Spatially resolved phase imaging of a programmable liquid-crystal grating

L. J. Friedman, D. S. Hobbs, S. Lieberman, D. L. Corkum, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and T. A. Dorschner
Appl. Opt. 35(31) 6236-6240 (1996)

Hadamard transforms of images by use of inexpensive liquid-crystal spatial light modulators

A. E. Macgregor and R. I. Young
Appl. Opt. 36(8) 1726-1729 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved