Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Reflectometric frequency-modulation continuous-wave distributed fiber-optic stress sensor with forward coupled beams

Not Accessible

Your library or personal account may give you access

Abstract

A distributed optical-fiber stress sensor whose principle of operation is based on the frequency-modulation continuous-wave technique is reported. The sensor consists of a length of birefringent fiber with a mirror attached to one end, a diode laser, and a p–i–n photodiode detector. The intensity and the location of an applied stress are determined simultaneously by detecting the amplitude and the frequency of the beat signal, which is produced by two forward-coupled mode beams. The system was found to have a reasonable spatial resolution of 0.85 m (rms error) in a sensing range of 100 m. The advantages and limitations of the sensor are also discussed.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Multiplexing of optical fiber gas sensors with a frequency-modulated continuous-wave technique

H. B. Yu, W. Jin, H. L. Ho, K. C. Chan, C. C. Chan, M. S. Demokan, G. Stewart, B. Culshaw, and Y. B. Liao
Appl. Opt. 40(7) 1011-1020 (2001)

Interferometric distributed optical-fiber sensor

Stephanus J. Spammer, Pieter L. Swart, and André Booysen
Appl. Opt. 35(22) 4522-4525 (1996)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved