Abstract
Temperature measurements were performed in a shock-tunnel-generated free jet of hydrogen/oxygen reaction products diluted in argon with a nonsimultaneous, two-excitation-line planar laser-induced fluorescence technique with the hydroxyl radical (OH) as a tracer. Single-shot images were obtained with broadband excitation of isolated transitions in the A
2Σ+ ← X
2Π(1, 0) band of OH near 282 nm, with broadband, temporally integrated detection of the resulting nonresonant emission. A measurement of the fluorescence lifetime in the free jet showed no variation with excited rotational level, allowing the rotational temperature to be obtained from the ratio of single-shot images with laser excitation of different rovibronic transitions.
© 1996 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (11)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (6)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription