Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Wavelength-dependent model of Kr flash lamp emission and absorption

Not Accessible

Your library or personal account may give you access

Abstract

We present a simple model of the angular intensity distribution of linear flash lamps for laser pumping application, which also takes into account the plasma column absorption during flash pulse. The model parameters are derived by single-shot measurements of plasma emission and transmission, performed with an imaging spectrometer and a CCD detector. The model consists in a linear superposition, wavelength by wavelength, of a surface (opaque) and a volume (transparent) emitter and represents a good approximation of the time-averaged lamp emission and absorption for pulse durations from 50 µs to 2 ms. This model is a suitable tool for reflector optimization of flash-lamp-pumped solid-state lasers, allowing complete wavelength-dependent ray tracing with currently available computing power. Some sample applications are also shown and discussed, with results of ray tracing for a slab laser and evaluation of the effects of lamp blackbody emission for several laser active media and flash lamp excitation pulses.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Time-resolved xenon flash-lamp opacity measurements

Gary J. Linford
Appl. Opt. 33(36) 8333-8345 (1994)

Ray-tracing analysis of pumping reflectors for slab lasers. 1: Standard involute reflectors

U. Bafile and P. Mazzinghi
Appl. Opt. 31(10) 1455-1463 (1992)

Flash-lamp-pumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: modeling of a single, long pulse length comparison

Norman P. Barnes, Keith E. Murray, and Mahendra G. Jani
Appl. Opt. 36(15) 3363-3374 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.