Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Single Gaussian beam interaction with a Kerr microsphere: characteristics of the radiation force

Not Accessible

Your library or personal account may give you access

Abstract

We analyze the characteristics of the radiation force that is generated when a highly focused unpolarized Gaussian beam interacts with a nonabsorbing microsphere whose refractive index exhibits a first-order dependence on the beam intensity. The behavior of the force exerted on the sphere is analyzed as a function of beam power, axial distance, sphere radius, refractive-index difference between the sphere and the surrounding liquid, and wavelength. The force characteristics are compared with those of the radiation force that is generated when the electro-optic Kerr effect is absent. Our results show that a reversal in the net force direction is introduced when the Kerr effect becomes significant, which occurs at sufficiently high beam intensities.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Radiation force on a nonlinear microsphere by a tightly focused Gaussian beam

Romeric Pobre and Caesar Saloma
Appl. Opt. 41(36) 7694-7701 (2002)

Trapping forces in a multiple-beam fiber-optic trap

Erkin Sidick, Scott D. Collins, and André Knoesen
Appl. Opt. 36(25) 6423-6433 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved