Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Edge technique Doppler lidar wind measurements with high vertical resolution

Not Accessible

Your library or personal account may give you access

Abstract

We have developed a Doppler lidar system using the edge technique and have made atmospheric lidar wind measurements. Line-of-sight wind profiles with a vertical resolution of 22 m have a standard deviation of 0.40 m/s for a ten-shot average. Day and night lidar measurements of the vector wind have been made for altitudes from 200 to 2000 m. We validated the lidar measurements by comparing them with independent rawinsonde and pilot balloon measurements of wind speed and direction. Good agreement was obtained. The instrumental noise for these data is 0.11 m/s for a 500-shot average, which is in good agreement with the observed minimum value of the standard deviation for the atmospheric measurements. The average standard deviation over 30 mins varied from 1.16 to 0.25 m/s for day and night, respectively. High spatial and temporal resolution lidar profiles of line-of-sight winds clearly show wind shear and turbulent features at the 1–2-m/s level with a high signal-to-noise ratio and demonstrate the potential of the edge-technique lidar for studying turbulent processes and atmospheric dynamics.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Wind measurements with 355-nm molecular Doppler lidar

Bruce M. Gentry, Huailin Chen, and Steven X. Li
Opt. Lett. 25(17) 1231-1233 (2000)

Validation of wind profiles measured with incoherent Doppler lidar

Matthew J. McGill, Wilbert R. Skinner, and Todd D. Irgang
Appl. Opt. 36(9) 1928-1939 (1997)

Theory of the double-edge molecular technique for Doppler lidar wind measurement

Cristina Flesia and C. Laurence Korb
Appl. Opt. 38(3) 432-440 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved