Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Contactless efficient two-stage solar concentrator for tubular absorber

Not Accessible

Your library or personal account may give you access

Abstract

The design of a new type of two-mirror solar concentrator for a tubular receiver, the XX concentrator, is presented. The main feature of the XX is that it has a sizable gap between the secondary mirror and the absorber and it still achieves concentrations close to the thermodynamic limit with high collection efficiencies. This characteristic makes the XX unique and, contrary to current two-stage designs, allows for the location of the secondary outside the evacuated tube. One of the XX concentrators presented achieves an average flux concentration within ±0.73 deg of 91.1% of the thermodynamic limit with a collection efficiency of 96.8% (i.e., 3.2% of the rays incident on the primary mirror within ±0.73 deg are rejected). Another XX design is 92.5% efficient and receives 95.1% of the maximum concentration. These values are the highest reported for practical concentrators, to our knowledge. The gap between the absorber and the secondary mirror is 6.8 and 10.5 times the absorber radius for each concentrator. Moreover the rim angle of the primary mirror is 98.8 and 104.4 deg in each case, which is of interest for the collector’s good mechanical stability.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Nonimaging secondary concentrators for large rim angle parabolic troughs with tubular absorbers

Harald Ries and Wolfgang Spirkl
Appl. Opt. 35(13) 2242-2245 (1996)

Theory and design of line-to-point focus solar concentrators with tracking secondary optics

Thomas Cooper, Gianluca Ambrosetti, Andrea Pedretti, and Aldo Steinfeld
Appl. Opt. 52(35) 8586-8616 (2013)

Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs

Max Schmitz, Thomas Cooper, Gianluca Ambrosetti, and Aldo Steinfeld
Appl. Opt. 54(33) 9709-9721 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.