Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nonimaging optical designs for maximum-power-density remote irradiation

Not Accessible

Your library or personal account may give you access

Abstract

Designs for flexible, high-power-density, remote irradiation systems are presented. Applications include industrial infrared heating such as in semiconductor processing, alternatives to laser light for certain medical procedures, and general remote high-brightness lighting. The high power densities inherent to the small active radiating regions of conventional metal-halide, halogen, xenon, microwave-sulfur, and related lamps can be restored with nonimaging concentrators with little loss of power. These high flux levels can then be transported at high transmissivity with light channels such as optical fibers or lightpipes, and reshaped into luminaires that can deliver prescribed angular and spatial flux distributions onto desired targets. Details for nominally two- and three-dimensional systems are developed, along with estimates of optical performance.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Maximum-performance fiber-optic irradiation with nonimaging designs

Yueping Fang, Daniel Feuermann, and J. M. Gordon
Appl. Opt. 36(28) 7107-7113 (1997)

Optical performance of axisymmetric edge-ray concentrators and illuminators

Daniel Feuermann and Jeffrey M. Gordon
Appl. Opt. 37(10) 1905-1912 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.