Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design of a phase/Doppler light-scattering system for measurement of small-diameter glass fibers during fiberglass manufacturing

Not Accessible

Your library or personal account may give you access

Abstract

We present fundamental studies examining the design of a phase/Doppler laser light-scattering system applicable to on-line measurements of small-diameter (<15 μm) fibers during fiberglass manufacturing. We first discuss off-line diameter measurement techniques currently used in the fiberglass industry and outline the limitations and problems associated with these methods. For the phase/Doppler design study we have developed a theoretical computer model for the response of the measurement system to cylindrical fibers, which is based on electromagnetic scattering theory. The model, valid for arbitrary fiber diameters and hardware configurations, generates simulated detector output as a function of time for a finite absorbing, cylindrical fiber oriented perpendicular to the two incident laser beams. Results of experimental measurements are presented, confirming predictions of the theoretical model. Parametric studies have also been conducted using the computer model to identify experimental arrangements that provide linear phase–diameter relationships for small-diameter fibers, within the measurement constraints imposed by the fiberglass production environment. The effect of variations in optical properties of the glass as well as fiber orientation effects are discussed. Through this research we have identified phase/Doppler arrangements that we expect to have future applications in the fiberglass industry for on-line diameter monitoring and process control.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Response of Phase Doppler Anemometer systems to nonspherical droplets

Nils Damaschke, Gerard Gouesbet, Gerard Gréhan, Hervé Mignon, and Cam Tropea
Appl. Opt. 37(10) 1752-1761 (1998)

Modeling of direct detection Doppler wind lidar. I. The edge technique

Jack A. McKay
Appl. Opt. 37(27) 6480-6486 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved