Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photochemical effect in two-photon laser-induced fluorescence detection of carbon monoxide in hydrocarbon flames

Not Accessible

Your library or personal account may give you access

Abstract

The CO formation as a result of the CO2 photodissociation at 230.08 nm was observed by using the two-photon laser-induced fluorescence (LIF) method. The measurements were performed in a propane–air combustion product flow and in mixtures of CO2 and O2. The temperature dependence of the fluorescence signal caused by CO molecules, produced in the photodissociation of CO2 molecules under the action of laser radiation at a wavelength of 230.08 nm, was measured at temperatures ranging from 1300 to 2000 K. It is shown that consideration of CO2 photodissociation under the action of the probing radiation is necessary when one applies the two-photon LIF method for the measurement of small CO concentrations in high-temperature gas mixtures containing CO2. As an example, a correction is given of the CO concentration profiles measured by the LIF method in the combustion product flow around a cooled metallic plate.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Detection of nitrogen atoms in flames using two-photon laser-induced fluorescence and investigations of photochemical effects

Ulf Westblom, Sara Agrup, Marcus Aldén, and Per Cederbalk
Appl. Opt. 30(21) 2990-3002 (1991)

Quantitative two-photon LIF imaging of carbon monoxide in combustion gases

Jerry M. Seitzman, Jurgen Haumann, and Ronald K. Hanson
Appl. Opt. 26(14) 2892-2899 (1987)

Analysis of laser-induced-fluorescence carbon monoxide measurements in turbulent nonpremixed flames

A. V. Mokhov, H. B. Levinsky, C. E. van der Meij, and R. A. A. M. Jacobs
Appl. Opt. 34(30) 7074-7082 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved