Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modeling of Tm,Ho:YAG and Tm,Ho:YLF 2-μm lasers and calculation of extractable energies

Not Accessible

Your library or personal account may give you access

Abstract

The development of a model for 2-μm laser operation in Tm,Ho:YAG and YLF crystals pumped in the near infrared is reported. This model, based on a simplified spectroscopic scheme, is fitted to a set of characterization experiments by means of three adjustable parameters. Results show that the excited-state populations are predicted with a relative accuracy of approximately 10% for a large range of pump levels. Using this model, we calculate the extractable energy on short-laser-pulse interactions for the two materials under different operation conditions. We study the sensitivity to pump duration and the optimization of dopant concentrations. We investigate the improvement of the extractable-energy efficiency with multiple-pulse operation. For double-pulse operation the improvement is approximately a factor of 1.5 and leads to overall extractable-energy efficiencies of 16% in YAG and 15% in YLF for an absorbed pump energy of 10 J cm-3.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Flash-lamp-pumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: modeling of a single, long pulse length comparison

Norman P. Barnes, Keith E. Murray, and Mahendra G. Jani
Appl. Opt. 36(15) 3363-3374 (1997)

Ho:YAG laser intracavity pumped by a diode-pumped Tm:YLF laser

M. Schellhorn, A. Hirth, and C. Kieleck
Opt. Lett. 28(20) 1933-1935 (2003)

2-W Ho:YAG laser intracavity pumped by a diode-pumped Tm:YAG laser

C. Bollig, R. A. Hayward, W. A. Clarkson, and D. C. Hanna
Opt. Lett. 23(22) 1757-1759 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved