Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Pixelated liquid-crystal light valve for neural network application

Not Accessible

Your library or personal account may give you access

Abstract

The liquid-crystal light valve (LCLV) is a useful component for performing integration, thresholding, and gain functions in optical neural networks. Integration of the neural activation channels is implemented by pixelation of the LCLV, with use of a structured metallic layer between the photoconductor and the liquid-crystal layer. Measurements are presented for this type of valve, examples of which were prepared for two specific neural network implementations. The valve fabrication and measurement were carried out at the State Optical Institute, St. Petersburg, Russia, and the modeling and system applications were investigated at the Institute of Microtechnology, Neuchâtel, Switzerland.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Incorporation of liquid-crystal light valve nonlinearities in optical multilayer neural networks

P. D. Moerland, E. Fiesler, and I. Saxena
Appl. Opt. 35(26) 5301-5307 (1996)

Transmissive liquid crystal light-valve for near-infrared applications

Umberto Bortolozzo, Stefania Residori, and Jean-Pierre Huignard
Appl. Opt. 52(22) E73-E77 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.