Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography

Not Accessible

Your library or personal account may give you access

Abstract

A Newton–Raphson inversion algorithm has been extended for simultaneous absorption and scattering reconstruction of fully three-dimensional (3D) diffuse optical tomographic imaging from time-resolved measurements. The proposed algorithm is derived from the efficient computation of the Jacobian matrix of the forward model and uses either the algebraic reconstruction technique or truncated singular-value decomposition as the linear inversion tool. Its validation was examined with numerically simulated data from 3-D finite-element discretization models of tissuelike phantoms, with several combinations of geometric and optical properties, as well as two commonly used source–detector configurations. Our results show that the fully 3-D image reconstruction of an object can be achieved with reasonable quality when volumetric light propagation in tissues is considered, and temporal information from the measurements can be effectively employed. Also, we investigated the conditions under which 3-D issues could be approximately addressed with two-dimensional reconstruction algorithms and further demonstrated that these conditions are seldom predictable or attainable in practice. Thus the application of 3-D algorithms to realistic situations is necessary.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique

Feng Gao, Yukari Tanikawa, Huijuan Zhao, and Yukio Yamada
Appl. Opt. 41(34) 7346-7358 (2002)

Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography

Florian E. W. Schmidt, Jeremy C. Hebden, Elizabeth M. C. Hillman, Martin E. Fry, Martin Schweiger, Hamid Dehghani, David T. Delpy, and Simon R. Arridge
Appl. Opt. 39(19) 3380-3387 (2000)

Comparison of two- and three-dimensional reconstruction methods in optical tomography

Martin Schweiger and Simon R. Arridge
Appl. Opt. 37(31) 7419-7428 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.