Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Vibrational-Rotational Population Inversion

Not Accessible

Your library or personal account may give you access

Abstract

A general theory of partial and complete vibrational-rotational population inversion is developed. The requirement for stimulated emission in the R-branch is that the rotational quantum number J shall exceed a minimum value which depends in a simple fashion on the ratio of the rotational to the vibrational temperature (Tr/Tυ), both of which may be positive (partial inversion). Stimulated emission in the Q and R branches is only possible if Tυ < 0 (complete inversion). Features peculiar to a vibrational-rotational laser are discussed in terms of the equation for net gain. Rough upper limits are set on the power output from a chemical laser. The equations governing partial inversion are illustrated for the example of HCl. Processes (electric discharge, chemical reaction) which have produced partial population inversion are discussed. The problem of maintaining complete population inversion is set out in terms of a hypothetical process forming CO continuously in level υ = 7 only. Physical processes which might excite a molecule into a high vibrational state either by way of an electronically excited state (through fluorescence) or within the ground electronic state (through electronic → vibrational transfer, or through energetic impacts) are discussed. Chemical processes which might result in a greater probability for reaction into a higher vibrational state than a lower one, kυ′kυ, are considered under three headings: attractive, mixed, and repulsive reactions. (a) In attractive reactions it is supposed that the reagents attract but the products do not repel (significantly); the heat of reaction is trapped as vibration in the new bond. (b) In the mixed reactions it is argued that there is a tendency for the repulsion to be dissipated while the new bond is still extended; as a result, both repulsion and attraction could be converted to vibration in the new bond. (c) The repulsive reactions only appear likely to give kυ′kυ in special circumstances; if the central atom is light or the repulsion impulsive. Examples are suggested in each category: (a) association reactions; (b) covalent → ionic reactions (e.g., alkali metal atom plus halogen or halide); (c) covalent reactions. The second category shows particular promise of providing reactions suitable for use in a chemical laser.

© 1965 Optical Society of America

Full Article  |  PDF Article
More Like This
Nonequilibrium Chemical Excitation and Chemical Pumping of Lasers

Kurt E. Shuler, Tucker Carrington, and John C. Light
Appl. Opt. 4(S1) 81-104 (1965)

Molecular Beam Studies of Internal Excitation of Reaction Products

D. R. Herschbach
Appl. Opt. 4(S1) 128-144 (1965)

Inverted Population Distributions Produced by Chemical Reactions

H. P. Broida
Appl. Opt. 4(S1) 105-108 (1965)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (60)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.