Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Improvement in holographic storage capacity by use of double-random phase encryption

Not Accessible

Your library or personal account may give you access

Abstract

We show that a double-random encryption technique can improve the storage capacity of an angular-multiplexed holographic memory system. In the holographic memory system, input binary images are encrypted into white-noise-like images by use of two random phase masks located at the input and the Fourier planes. These encrypted images are stored as holograms in a photorefractive medium by use of angular multiplexing. All the images are encrypted by different sets of random phase masks. Even when the angle separation between adjacent images is small enough to cause cross talk between adjacent images, original binary data can be recovered with the correct phase mask; the other reconstructed images remain white-noise-like images because incorrect masks are used. Therefore the capacity of the proposed system can be larger than that of a conventional holographic memory system without the random phase encryption technique. Numerical evaluation and experimental results are presented to confirm that the capacity of the system with random phase masks is larger than that of the conventional memory system.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Secure optical storage that uses fully phase encryption

Xiaodi Tan, Osamu Matoba, Tsutomu Shimura, Kazuo Kuroda, and Bahram Javidi
Appl. Opt. 39(35) 6689-6694 (2000)

Encrypted optical storage with angular multiplexing

Osamu Matoba and Bahram Javidi
Appl. Opt. 38(35) 7288-7293 (1999)

Encrypted optical memory using double-random phase encoding

Bahram Javidi, Guanshen Zhang, and Jian Li
Appl. Opt. 36(5) 1054-1058 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.