Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Systematic approach based on holographic interferometry measurements to characterize the flame structure of partially premixed flames

Not Accessible

Your library or personal account may give you access

Abstract

Partially premixed flames (PPF’s) represent a class of hybrid flames that contain multiple reaction zones. A detailed understanding of the temperature distribution in PPF’s is important from both practical and scientific considerations. Path-integrated or line-of-sight measurement techniques, such as holographic interferometry (HI), that are based on the change in the optical phase of a light beam can be used to reconstruct the refractive index n in flames and thereafter to infer the temperature distribution. Therefore to describe the flame structure in the context of these measurements requires that a systematic approach be developed that relates the density, the temperature, and the composition to the refractive index. We demonstrate that a conserved scalar ξ that transforms the flame structure from a spatial to a generic distribution can be inferred from the refractive-index distribution. Thereafter measurements of the density, the temperature, and the composition in two-dimensional PPF’s become feasible. We report the first application, to our knowledge, of this method to HI. Specifically, we used HI to measure the refractive-index distributions in methane–air PPF’s. One PPF is a double flame that has two reaction zones, and the other is a triple flame that contains three reaction zones. We have applied the procedure to infer the distribution of the modified mixture fraction and thereafter the local temperature and the local mass fractions. We find the local temperature differences, ΔT(x, y) = |T[ n(x, y)] - T′[ξ(x, y)]|, to be relatively small. We conclude that it is possible to use HI to infer the mixture-fraction distribution and thereafter the flame structures by the application of state relations in the case of PPF’s.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Temperature measurements in steady axisymmetric partially premixed flames by use of rainbow schlieren deflectometry

Xudong Xiao, Ishwar K. Puri, and Ajay K. Agrawal
Appl. Opt. 41(10) 1922-1928 (2002)

Mixture fraction measurement in turbulent non-premixed MILD jet flame using Rayleigh scattering

Abinash Sahoo, Aravind Ramachandran, Venkateswaran Narayanaswamy, and Kevin M. Lyons
Appl. Opt. 61(9) 2338-2351 (2022)

Determining the effect of species composition on temperature fields of tank flames using real-time holographic interferometry

Markus Gawlowski, Kerry E. Kelly, Laurie A. Marcotte, and Axel Schönbucher
Appl. Opt. 48(23) 4625-4636 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.