Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Implementation of intensity-modulated laser diodes in time-resolved, pump–probe fluorescence microscopy

Not Accessible

Your library or personal account may give you access

Abstract

We present the implementation of intensity-modulated laser diodes for applications in frequency-domain pump–probe fluorescence microscopy. Our technique, which is based on the stimulated-emission approach, uses two sinusoidally modulated laser diodes. One laser (635 nm) excites the chromophores under study, and the other laser (680 nm) is responsible for inducing stimulated emission from excited-state molecules. Both light sources are modulated in the 80-MHz range but with an offset of 5 kHz between them. The result of the interaction of the pump and the probe beams is that a cross-correlation fluorescence signal at 5 kHz is generated primarily at the focal volume. Microscope imaging at the cross-correlation signal results in images with high contrast, and time-resolved high-frequency information can be acquired without high-speed detection. A detailed experimental arrangement of our methodology is presented along with images acquired from a 4.0-µm-diameter fluorescent sphere and TOTO-3–labeled mouse STO cells. (TOTO-3 is a nucleic acid stain.) Our results demonstrate the feasibility of using sinusoidally modulated laser diodes for pump–probe imaging, creating the exciting possibility of high-contrast time-resolved imaging with low-cost laser-diode systems.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Effects of index-mismatch-induced spherical aberration in pump–probe microscopic image formation

Peter T. Fwu, Po-Hsiang Wang, Chi-Kuan Tung, and Chen-Yuan Dong
Appl. Opt. 44(20) 4220-4227 (2005)

Whole-field five-dimensional fluorescence microscopy combining lifetime and spectral resolution with optical sectioning

J. Siegel, D. S. Elson, S. E. D. Webb, D. Parsons-Karavassilis, S. Lévêque-Fort, M. J. Cole, M. J. Lever, P. M. W. French, M. A. A. Neil, R. Juŝkaitis, L. O. Sucharov, and T. Wilson
Opt. Lett. 26(17) 1338-1340 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.