Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Radiances simulated in the presence of clouds by use of a fast radiative transfer model and a multiple-scattering scheme

Not Accessible

Your library or personal account may give you access

Abstract

A fast-forward radiative transfer (RTF) model is presented that includes cloud-radiation interaction for any number of cloud layers. Layer cloud fraction and transmittance are treated separately and combined with that of gaseous transmittances. RTF is tested against a reference procedure that uses line-by-line gaseous transmittances and solves the radiative transfer equation by use of the adding-doubling method to handle multiple-scattering conditions properly. The comparison is carried out for channels 8, 12, and 14 of the High Resolution Infrared Radiation Sounder (HIRS/2) and for the geostationary satellite METEOSAT thermal infrared and water vapor channels. Fairly large differences in simulated radiances by the two schemes are found in clear conditions for upper- and mid-tropospheric channels; the cause of the differences is discussed. For cloudy situations an improved layer source function is shown to be required when rapid changes in atmospheric transmission are experienced within the model layers. The roles of scattering processes are discussed; results with and without scattering, both obtained by use of a reference code, are compared. Overall, the presented results show that the fast model is capable of reproducing the cloudy results of the much more complex and time-consuming reference scheme.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Sensor-based clear and cloud radiance calculations in the community radiative transfer model

Quanhua Liu, Y. Xue, and C. Li
Appl. Opt. 52(20) 4981-4990 (2013)

Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances

Marco Matricardi and Roger Saunders
Appl. Opt. 38(27) 5679-5691 (1999)

Simulation of uplooking and downlooking high-resolution radiance spectra with two different radiative transfer models

Rolando Rizzi, Marco Matricardi, and Ferenc Miskolczi
Appl. Opt. 41(6) 940-956 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.