Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Raman lidar monitoring of extinction and backscattering of African dust layers and dust characterization

Not Accessible

Your library or personal account may give you access

Abstract

Results on the monitoring of strong African dust outbreaks at Lecce in the southeastern corner of Italy (40°20′ N, 18°6′ E) during May 2001 are presented. This activity has been performed in the framework of the European Aerosol Research Lidar Network (EARLINET). The lidar station of Lecce is located on a flat rural area that is approximately 800 km from the northern Africa coast. So it is closer to Africa than most of all other EARLINET stations and allow monitoring African dust transport early in its life cycle, at all levels in the plume. An elastic-backscatter Raman lidar based on a XeF excimer laser (351 nm) has been used to monitor the time evolution and vertical structure of the dust layers and get independent measurements of the aerosol extinction and backscatter coefficients. The findings are presented in terms of vertical profiles of the extinction and backscatter coefficients and of the lidar ratio. A quite deep dust layer extending between 2 and 6 km and characterized by a backscatter coefficient of ∼0.0016 (km sr)-1, a lidar ratio of approximately 50 sr, and an aerosol optical depth of 0.26 was observed on 17 May 2001 between 18:55 and 20:07 UT. The layer persisted for approximately five days. Dust layers of lower optical thickness and shorter persistence time have generally been monitored at the lidar site during African dust outbreaks. Results on the chemical and morphological characterization of the dust collected at the lidar station are also given to further support the origin of the monitored aerosol layers.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Imaginary refractive-index effects on desert-aerosol extinction versus backscatter relationships at 351 nm: numerical computations and comparison with Raman lidar measurements

Maria Rita Perrone, Francesca Barnaba, Ferdinando De Tomasi, Gian Paolo Gobbi, and Anna Maria Tafuro
Appl. Opt. 43(29) 5531-5541 (2004)

Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba

Tetsu Sakai, Tomohiro Nagai, Masahisa Nakazato, Yuzo Mano, and Takatsugu Matsumura
Appl. Opt. 42(36) 7103-7116 (2003)

Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio

Gelsomina Pappalardo, Aldo Amodeo, Marco Pandolfi, Ulla Wandinger, Albert Ansmann, Jens Bösenberg, Volker Matthias, Vassilis Amiridis, Ferdinando De Tomasi, Max Frioud, Marco Iarlori, Leonce Komguem, Alexandros Papayannis, Francesc Rocadenbosch, and Xuan Wang
Appl. Opt. 43(28) 5370-5385 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.