Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Practical realization of high-speed photodisplacement imaging by use of parallel excitation and parallel heterodyne detection: a numerical study

Not Accessible

Your library or personal account may give you access

Abstract

A new parallel photodisplacement technique that achieves extremely high-throughput imaging is proposed, and its practical realization is studied numerically. In this technique, a linear region of photothermal displacement is excited by use of a line-focusing intensity-modulated laser beam and detected with a parallel heterodyne interferometer in which a charge-coupled device linear image sensor is used. Because of the integration and sampling effects of the sensor, the interference light is spatiotemporally multiplexed. To extract the photodisplacement component from the multiplexed sensor signal, a scheme of phase-shifting light integration under an undersampling condition is proposed for parallel interferometry. The frequencies of several control signals, including the heterodyne beat signal, modulation signal, and sensor gate signal, are optimized so as to eliminate undesirable components, allowing only the displacement component to be extracted. Preliminary numerical simulation results show that the proposed technique has the potential to perform photodisplacement imaging more than 10,000 times faster than conventional photoacoustic microscopy.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Real-time photodisplacement microscope for high-sensitivity simultaneous surface and subsurface inspection

Toshihiko Nakata, Kazushi Yoshimura, and Takanori Ninomiya
Appl. Opt. 45(12) 2643-2655 (2006)

General solution of undersampling frequency conversion and its optimization for parallel photodisplacement imaging

Toshihiko Nakata and Takanori Ninomiya
Appl. Opt. 45(29) 7579-7589 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved