Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical memory effect in a deformed helix ferroelectric liquid crystal

Not Accessible

Your library or personal account may give you access

Abstract

Optical memory in a deformed-helix ferroelectric liquid crystal is proposed by deforming the helix under the application of a square-voltage pulse of known magnitude and frequency. This effect is based on the electromechanical effect of helix deformation due to the electric field. When the interaction between the electric field and the dipole is sufficiently strong, all of the dipoles align along the electric field. In such a situation the interlayer dipole-dipole interaction is strong enough to balance the elastic deformation energy. When the electric field is switched off, the molecules remain in a static, balanced state owing to the dipole-dipole interaction and hence the memory effect.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Spatial light modulator based on a deformed-helix ferroelectric liquid crystal and a thin a-Si:H amorphous photoconductor

Gil B. Cohen, Roman Pogreb, Klara Vinokur, and Dan Davidov
Appl. Opt. 36(2) 455-459 (1997)

Enhanced performance configuration for fast-switching deformed helix ferroelectric liquid crystal continuous tunable Lyot filter

A. M. W. Tam, G. Qi, A. K. Srivastava, X. Q. Wang, F. Fan, V. G. Chigrinov, and H. S. Kwok
Appl. Opt. 53(17) 3787-3795 (2014)

Fast bistable intensive light scattering in helix-free ferroelectric liquid crystals

Alexander Andreev, Tatiana Andreeva, Igor Kompanets, Nikolay Zalyapin, Huan Xu, Mike Pivnenko, and Daping Chu
Appl. Opt. 55(13) 3483-3492 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.