Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Experimental and theoretical investigation of fluorescence photobleaching and recovery in human breast tissue and tissue phantoms

Not Accessible

Your library or personal account may give you access

Abstract

Photobleaching and recovery of 488-nm excited fluorescence from resected human breast tissue samples have been studied. Profiles of photobleaching decay were seen to be faster in cancerous tissue than in those of the normal tissue. The reverse behavior was observed in profiles of recovery after photobleaching. A theoretical model based on one-dimensional diffusion theory has been developed to provide insight into the phenomena of fluorescence during photobleaching and recovery in a multiply scattering medium such as tissue. To understand photobleaching and recovery with the help of this theoretical model, we carried out experiments with model media that were prepared with authentic fluorophores, scatterers, and absorbers. The results of these studies suggest that the fluorescence photobleaching profiles are affected more by the absorption than by the scattering properties of a turbid medium such as tissue. In contrast, the scattering properties of the medium are found to affect the fluorescence recovery profiles to a greater extent. These observations could be related to the observed difference in fluorescence photobleaching and recovery profiles of normal and cancerous breast tissues.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model

Maya S. Nair, Nirmalya Ghosh, Narisetti Sundar Raju, and Asima Pradhan
Appl. Opt. 41(19) 4024-4035 (2002)

Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods

Yang Pu, Wubao Wang, Yuanlong Yang, and Robert R. Alfano
Appl. Opt. 52(6) 1293-1301 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved