Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Thermal effect of radiation on dye-doped polystyrene particles covered with a silver layer

Not Accessible

Your library or personal account may give you access

Abstract

The heating of laser-irradiated two-layer spherical particles is analyzed theoretically and numerically by solution of the heat conduction equation. The internal heat source function and temperature distributions are presented for particles composed of a dye-doped polystyrene core and a deposited silver shell. It is shown that the internal heat source function distributions inside such particles substantially depend on core radii and shell thicknesses. Therefore the same parameters also strongly influence the heating times of such particles. In particular, the increase in thickness of the surface silver layer can result both in reduction of the heating time of two-layer particles and in strong growth of the heating time.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Heating of three-layer solid aerosol particles by laser radiation

Liudmila G. Astafyeva, Nikolai V. Voshchinnikov, and Lawrence B. F. M. Waters
Appl. Opt. 41(18) 3700-3705 (2002)

Heating and destruction of metallic particles exposed to intense laser radiation

Anatoly P. Prishivalko, Ludmila G. Astafieva, and Svetlana T. Leiko
Appl. Opt. 35(6) 965-972 (1996)

Modeling of optical properties of silver-doped nanocomposite glasses modified by electric-field-assisted dissolution of nanoparticles

Jordi Sancho-Parramon, Amin Abdolvand, Alexander Podlipensky, Gerhard Seifert, Heinrich Graener, and Frank Syrowatka
Appl. Opt. 45(35) 8874-8881 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.