Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multiframe blind deconvolution of heavily blurred astronomical images

Not Accessible

Your library or personal account may give you access

Abstract

A multichannel blind deconvolution algorithm that incorporates the maximum-likelihood image restoration by several estimates of the differently blurred point-spread function (PSF) into the Ayers–Dainty iterative algorithm is proposed. The algorithm uses no restrictions on the image and the PSFs except for the assumption that they are positive. The algorithm employs no cost functions, input parameters, a priori probability distributions, or the analytically specified transfer functions. The iterative algorithm permits its application in the presence of different kinds of distortion. The work presents results of digital modeling and the results of processing real telescope data from several satellites. The proof of convergence of the algorithm to the positive estimates of object and the PSFs is given. The convergence of the Ayers–Dainty algorithm with a single processed frame is not obvious in the general case; therefore it is useful to have confidence in its convergence in a multiframe case. The dependence of convergence on the number of processed frames is discussed. Formulas for evaluating the quality of the algorithm performance on each iteration and the rule of stopping its work in accordance with this quality are proposed. A method of building the monotonically converging subsequence of the image estimates of all the images obtained in the iterative process is also proposed.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Multiframe blind deconvolution of astronomical images

Timothy J. Schulz
J. Opt. Soc. Am. A 10(5) 1064-1073 (1993)

Initialization of iterative parametric algorithms for blind deconvolution of motion-blurred images

Vadim Loyev and Yitzhak Yitzhaky
Appl. Opt. 45(11) 2444-2452 (2006)

Fast and optimal multiframe blind deconvolution algorithm for high-resolution ground-based imaging of space objects

Charles L. Matson, Kathy Borelli, Stuart Jefferies, Charles C. Beckner, Jr., E. Keith Hege, and Michael Lloyd-Hart
Appl. Opt. 48(1) A75-A92 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.