Abstract
A novel hybrid genetic algorithm (HGA) is proposed to solve the branch-cut phase unwrapping problem. It employs both local and global search methods. The local search is implemented by using the nearest-neighbor method, whereas the global search is performed by using the genetic algorithm. The branch-cut phase unwrapping problem [a nondeterministic polynomial (NP-hard) problem] is implemented in a similar way to the traveling-salesman problem,
a very-well-known combinational optimization problem with profound research and applications. The performance of the proposed algorithm was tested on both simulated and real wrapped phase maps. The HGA is found to be robust and fast compared with three well-known branch-cut phase unwrapping algorithms.
© 2007 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (18)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (2)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (4)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription