Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Pressure and velocity dependence of the material removal rate in the fast polishing process

Not Accessible

Your library or personal account may give you access

Abstract

Based on the direct contact between the wafer and the pad, the pressure and velocity dependence of the material removal rate (MRR) in the fast polishing process (FPP) is investigated. There are three assumptions of the FPP material removal mechanism: the normal distribution of abrasive size, a periodic roughness of the pad surface, and the plastic contact between wafer–abrasive and pad–abrasive interfaces. Based on the particular FPP, a novel movement of the wafer is analyzed and a MRR equation is developed. The experiments with parameters of pressure and velocity are shown to verify the equation. Thus, a better understanding of the fundamental mechanism involved in FPP can be obtained.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Micro-analysis model for material removal mechanisms of bonnet polishing

Chenchun Shi, Yunfeng Peng, Liang Hou, Zhenzhong Wang, and Yinbiao Guo
Appl. Opt. 57(11) 2861-2872 (2018)

Removal rate model for magnetorheological finishing of glass

Jessica E. DeGroote, Anne E. Marino, John P. Wilson, Amy L. Bishop, John C. Lambropoulos, and Stephen D. Jacobs
Appl. Opt. 46(32) 7927-7941 (2007)

Improved analysis model for material removal mechanisms of bonnet polishing incorporating the pad wear effect

Chenchun Shi, Yunfeng Peng, Liang Hou, Zhenzhong Wang, and Yinbiao Guo
Appl. Opt. 57(25) 7172-7186 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.