Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

1.5% root-mean-squre flat-intensity laser beam formed using a binary-amplitude spatial light modulator

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate a digital micromirror device (DMD)-based optical system that converts a spatially noisy quasi-Gaussian to an eighth-order super-Lorentzian flat-top beam. We use an error-diffusion algorithm to design the binary pattern for the Texas Instruments DLP device. Following the DMD, a telescope with a pinhole low-pass filters the beam and scales it to the desired sized image. Experimental measurements show a 1% root-mean-square (RMS) flatness over a diameter of 0.28mm in the center of the flat-top beam and better than 1.5% RMS flatness over its entire 1.43mm diameter. The power conversion efficiency is 37%. We develop an alignment technique to ensure that the DMD pattern is correctly positioned on the incident beam. An interferometric measurement of the DMD surface flatness shows that phase uniformity is maintained in the output beam. Our approach is highly flexible and is able to produce not only flat-top beams with different parameters, but also any slowly varying target beam shape. It can be used to generate the homogeneous optical lattice required for Bose–Einstein condensate cold atom experiments.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
High-precision laser beam shaping using a binary-amplitude spatial light modulator

Jinyang Liang, Rudolph N. Kohn, Jr., Michael F. Becker, and Daniel J. Heinzen
Appl. Opt. 49(8) 1323-1330 (2010)

Imaging-based amplitude laser beam shaping for material processing by 2D reflectivity tuning of a spatial light modulator

Jiangning Li, Zheng Kuang, Stuart Edwardson, Walter Perrie, Dun Liu, and Geoff Dearden
Appl. Opt. 55(5) 1095-1100 (2016)

Generating flat-top beams with extended depth of focus

Vishwa Pal, Chene Tradonsky, Ronen Chriki, Natan Kaplan, Alexander Brodsky, Mickael Attia, Nir Davidson, and Asher A. Friesem
Appl. Opt. 57(16) 4583-4589 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved