Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Monte Carlo simulation of multiple photon scattering in sugar maple tree canopies

Not Accessible

Your library or personal account may give you access

Abstract

Detecting objects hidden beneath forest canopies is a difficult task for optical remote sensing systems. Rather than relying upon the existence of gaps between leaves, as other researchers have done, our ultimate goal is to use light scattered by leaves to image through dense foliage. Herein we describe the development of a Monte Carlo model for simulating the scattering of light as it propagates through the leaves of an extended tree canopy. We measured several parameters, including the gap fraction and maximum leaf-area density, of a nearby sugar maple tree grove and applied them to our model. We report the results of our simulation in both the ground and the receiver planes for an assumed illumination angle of 80°. To validate our model, we then illuminated the sugar maple tree grove at 80° and collected data both on the canopy floor and at our monostatic receiver aperture. Experimental results were found to correlate well with our simulated expectations.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Bidirectional scattering distribution functions of maple and cottonwood leaves

Michael A. Greiner, Bradley D. Duncan, and Matthew P. Dierking
Appl. Opt. 46(25) 6485-6494 (2007)

Free-space optical communication through a forest canopy

Clinton L. Edwards and Christopher C. Davis
Appl. Opt. 45(1) 191-200 (2006)

Imaging polarimetry of forest canopies: how the azimuth direction of the sun, occluded by vegetation, can be assessed from the polarization pattern of the sunlit foliage

Ramón Hegedüs, András Barta, Balázs Bernáth, Victor Benno Meyer-Rochow, and Gábor Horváth
Appl. Opt. 46(23) 6019-6032 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved