Abstract
We present and characterize a sequential angular compounding method for reducing speckle contrast in optical coherence tomography images of paint layers. The results are compared with postprocessing methods, and we show that the compounding technique can improve the speckle contrast ratio in B-scans by better than a factor of 2 in exchange for a negligible loss of resolution. As a result, image aesthetics are improved, thin layers become more distinct, and edge-detection algorithms work more efficiently. The effect of varying the angular scan size and number of averages is investigated, and it is found that a degree of statistical correlation between speckle patterns exists, even for relatively large changes in angle of incidence. Angular compounding is also performed on three-dimensional data sets and compared with a method whereby en face slices are averaged over depth.
© 2009 Optical Society of America
Full Article | PDF ArticleMore Like This
Maciej Szkulmowski, Iwona Gorczynska, Daniel Szlag, Marcin Sylwestrzak, Andrzej Kowalczyk, and Maciej Wojtkowski
Opt. Express 20(2) 1337-1359 (2012)
Haida Liang, Marta Gomez Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, Justin Pedro, and David Saunders
Opt. Express 13(16) 6133-6144 (2005)
Desmond C. Adler, Jens Stenger, Iwona Gorczynska, Henry Lie, Teri Hensick, Ron Spronk, Stephan Wolohojian, Narayan Khandekar, James Y. Jiang, Scott Barry, Alex E. Cable, Robert Huber, and James G. Fujimoto
Opt. Express 15(24) 15972-15986 (2007)