Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temporally and spatially resolved measurements of the number density of water droplets in an intermittent aerosol

Not Accessible

Your library or personal account may give you access

Abstract

Temporally and spatially resolved measurements of the number density of water droplets in an intermittent aerosol were experimentally demonstrated by a laser-induced breakdown technique. The temporal number density distribution is clearly explained by temporal variations in the air pressure at the nozzle caused by an electric valve, the number density of droplets in the steady-state aerosol as a function of air pressure applied to the nozzle, and the steady-state air flow speed as a function of the air pressure applied to the nozzle. The spatial resolutions in the radial and axial directions are also discussed; they were determined from the breakdown threshold intensities of water droplets and air.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Pressure dependence of the laser-induced breakdown thresholds of gases and droplets

Petr Chylek, Maurice A. Jarzembski, Vandana Srivastava, and Ronald G. Pinnick
Appl. Opt. 29(15) 2303-2306 (1990)

Standoff monitoring of aqueous aerosols using nanosecond laser-induced breakdown spectroscopy: droplet size and matrix effects

Luis Alonso Álvarez-Trujillo, Violeta Lazic, Javier Moros, and J. Javier Laserna
Appl. Opt. 56(13) 3773-3782 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.