Abstract
A promising scheme for the remote detection of nitrate-based explosives, which have low vapor pressure, involves two lasers: the first to desorb, vaporize, and photofragment the explosive molecule and the second to create laser-induced fluorescence in the NO fragment. It is desirable to use for the first a powerful frequency-doubled Nd:YAG laser. In this study, we investigate the degree of photofragmentation into NO resulting from the irradiation of the explosives RDX and HMX coated on a variety of surfaces. The desorption step is followed by femtosecond laser ionization and time-of-flight mass spectrometry to reveal the fragments produced in the first step. We find that modest laser power of desorbs the explosive and produces adequate amounts of NO.
© 2010 Optical Society of America
Full Article | PDF ArticleMore Like This
Jerry Cabalo and Rosario Sausa
Appl. Opt. 44(6) 1084-1091 (2005)
C. M. Wynn, S. Palmacci, R. R. Kunz, K. Clow, and M. Rothschild
Appl. Opt. 47(31) 5767-5776 (2008)
Jeffrey M. Headrick, Thomas A. Reichardt, Thomas B. Settersten, Ray P. Bambha, and Dahv A. V. Kliner
Appl. Opt. 49(11) 2204-2214 (2010)