Abstract
Four non-zero-dispersion-shifted fibers with almost the same large effective area () and optimized dispersion properties are realized by novel index profile designing and modified vapor axial deposition and modified chemical vapor deposition processes. An of greater than is obtained for the designed fibers. Three of the developed fibers with positive dispersion are improved by reducing the dispersion slope from to or , increasing the dispersion from to or , and shifting the zero-dispersion wavelength from to . One of these fibers is in good agreement with G655D and G.656 fibers simultaneously, and another one with G655E and G.656 fibers; both fibers are beneficial to high-bit long-haul dense wavelength division multiplexing systems over S-, C-, and L-bands. The fourth developed fiber with negative dispersion is also improved by reducing the dispersion slope from to , increasing the dispersion from to , providing facilities for a submarine transmission system. Experimental measurements indicate that the developed fibers all have excellent optical transmission and good macrobending and splice performances.
© 2011 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (5)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (4)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (8)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription