Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optimization of coating uniformity in an ion beam sputtering system using a modified planetary rotation method

Not Accessible

Your library or personal account may give you access

Abstract

A modified planetary rotation system has been developed to obtain high uniformity optical coatings on large substrates in an ion beam sputter coater. The system allows the normally fixed sun gear to rotate, thus allowing an extra degree of freedom and permitting more complex motions to be used. By moving the substrate platen between two fixed positions around the sun axis, averaging of the distributions at these two positions takes place and improved uniformity can be achieved. A peak-to-valley radial uniformity of 0.15% (0.07%rms) on a single layer film on a 400mm diameter substrate has been achieved without the aid of masking.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Optimization of thickness uniformity of optical coatings on a conical substrate in a planetary rotation system

Chun Guo, Mingdong Kong, Cunding Liu, and Bincheng Li
Appl. Opt. 52(4) B26-B32 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved