Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Color fringe-projected technique for measuring dynamic objects based on bidimensional empirical mode decomposition

Not Accessible

Your library or personal account may give you access

Abstract

A triple-frequency color fringe-projected technique is presented to measure dynamic objects. Three fringe patterns with a carrier frequency ratio of 139 are encoded in red, green, and blue channels of a color fringe pattern and projected onto an object’s surface. Bidimensional empirical mode decomposition is used for decoupling the cross talk among color channels and for extracting the fundamental frequency components of the three fringe patterns. The unwrapped phase distribution of the high-frequency fringe is retrieved by a three-step phase unwrapping strategy to recover the object’s height distribution. Owing to its use of only a single snapshot, the technique is suitable for measuring dynamically changing objects with large discontinuity or spatially isolated surfaces.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Single-shot color fringe projection for three-dimensional shape measurement of objects with discontinuities

Meiling Dai, Fujun Yang, and Xiaoyuan He
Appl. Opt. 51(12) 2062-2069 (2012)

Fringe-projection profilometry based on two-dimensional empirical mode decomposition

Suzhen Zheng and Yiping Cao
Appl. Opt. 52(31) 7648-7653 (2013)

Three-dimensional measurement of object surfaces with complex shape and color distribution based on projection of color fringe patterns

Ke Chen, Jiangtao Xi, Yanguang Yu, Sheng Tong, and Qinghua Guo
Appl. Opt. 52(30) 7360-7366 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved