Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Energy transportation in a subwavelength waveguide composed of a pair of comb-shape nanorod chains

Not Accessible

Your library or personal account may give you access

Abstract

A subwavelength plasmonic waveguide composed of a pair of comb-shape nanorod chains is proposed. The electromagnetic energy can be transported in the waveguide via the interaction strength of magnetoinductive coupling as well as conduction current exchange. Finite Element Method simulation results reveal that for such a waveguide composed of 50 pairs of 400 nm-long-nanorods, a passband ranging from zero to cutoff frequency 156.2 THz, and an effective propagation length of 20.87 μm can be achieved simultaneously. The proposed mechanism of energy transport in the nanoscale has potential applications in subwavelength transmission lines for a wide range of integrated optical devices.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Calculation of waveguide modes in linear chains of metallic nanorods

Christos Tserkezis and Nikolaos Stefanou
J. Opt. Soc. Am. B 29(4) 827-832 (2012)

Superfocusing effect in the chain of silver nanorods

Zhidong Zhang, Zhongyue Zhang, and Hongyan Wang
Appl. Opt. 50(20) 3513-3518 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved