Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Three-wavelength parallel optical fiber dispersion measurement using dual-heterodyne mixing

Not Accessible

Your library or personal account may give you access

Abstract

We propose a novel optical dispersion measurement system using dual-heterodyne mixing to measure the relative phase. The system can realize parallel measurement of the relative phases between adjacent frequencies by introducing optical modulators to generate optical sidebands from a laser light source and an arrayed waveguide grating to separate the sidebands. To realize a wide dispersion range, different frequency intervals for the adjacent frequencies were combined in the system. One is the three-frequency optical dispersion measurement system (three-frequency measurement), which has been developed to measure the relative phase between adjacent peaks of an optical frequency spectrum with intervals of 25 GHz generated without any frequency scanning. The other is the four-frequency optical dispersion measurement system (four-frequency measurement) with intervals of 2 GHz generated from the three-frequency sets to expand the measurement range. The experimental results using single-mode optical fibers of different lengths from 0 to 90 km indicated the dispersion slope to be 16.8ps/nm/km with a measurement range of 2500ps/nm and an uncertainty of less than 1ps/nm. The proposed system provides advantages to enable parallel measurement on a frequency axis without a high-speed (GHz) photodetector, even though GHz spacing on the optical scale is used, thus reflecting the dual-heterodyne mixing.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Dispersion spectroscopy with optical frequency comb-based single-shot dual-heterodyne mixing

Sultana Nasrin, Hiroaki Tada, Leona Yuda, and Tatsutoshi Shioda
Appl. Opt. 58(33) 9044-9050 (2019)

Spectral waveform measurement of 2 THz optical frequency comb by dual-heterodyne mixing

Toshiaki Yamazaki, Mitsuru Kuzuwata, and Tatsutoshi Shioda
J. Opt. Soc. Am. B 29(7) 1707-1711 (2012)

Photonic generation of dual-band dual-chirp waveforms with anti-dispersion transmission

Shuna Yang, Wenjie Zhu, Hao Chi, Bo Yang, Jun Ou, and Yanrong Zhai
Appl. Opt. 62(13) 3512-3518 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.