Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application

Not Accessible

Your library or personal account may give you access

Abstract

The influence of symmetry breaking in a planar metamaterial on transparency effect is numerically investigated. The planar metamaterial’s cell is formed by three parallel metal wires. From numerical simulation results, we can see that the transparency effect results from the asymmetric coupling between the cut wires. The excited mechanism of the transparency effect is further analyzed by using the hybridization concept. It is found that the coupling fields between the cut wires play key roles and lead to the spectral splitting of the resonance, i.e., the classical electromagnetically induced transparency effect. The metamaterial sensor based on the refractive index variation of the surrounding material is also numerically demonstrated and yields a sensitivity of 9.47mm/RIU and a figure of merit of 13.5. In addition, the spectral response of the metamaterial is quantitatively described via the “three-particle” model. The analytically calculated results of the model show a good agreement with the simulation results.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials

Xiqun Lu, Jinhui Shi, Ran Liu, and Chunying Guan
Opt. Express 20(16) 17581-17590 (2012)

All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range

Tian Ma, Qiuping Huang, Hongchuan He, Yi Zhao, XIaoxia Lin, and Yalin Lu
Opt. Express 27(12) 16624-16634 (2019)

Multi-band slow light metamaterial

Lei Zhu, Fan-Yi Meng, Jia-Hui Fu, Qun Wu, and Jun Hua
Opt. Express 20(4) 4494-4502 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.