Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design and experimental investigation of highly efficient resonance-domain diffraction gratings in the visible spectral region

Not Accessible

Your library or personal account may give you access

Abstract

Surface-relief resonance-domain diffraction gratings with deep and dense grooves provide considerable changes in light propagation direction, wavefront curvature, and nearly 100% Bragg diffraction efficiency usually attributed only to volume optical holograms. In this paper, we present design, computer simulation, fabrication, and experimental results of binary resonance-domain diffraction gratings in the visible spectral region. Performance of imperfectly fabricated diffraction groove profiles was optimized by controlling the DC and the depth of the grooves. Indeed, more than 97% absolute Bragg diffraction efficiency was measured at the 635 nm wavelength with binary gratings having periods of 520 nm and groove depths of about 1000 nm, fabricated by direct electron-beam lithography and reactive ion etching.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Resonance domain surface relief diffractive lens for the visible spectral region

Omri Barlev and Michael A. Golub
Appl. Opt. 52(7) 1531-1540 (2013)

Shift-bonded resonance-domain diffraction gratings

Ramon Axelrod, Yosi Shacham-Diamand, and Michael Golub
Appl. Opt. 55(30) 8606-8611 (2016)

Effective grating theory for resonance domain surface-relief diffraction gratings

Michael A. Golub and Asher A. Friesem
J. Opt. Soc. Am. A 22(6) 1115-1126 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved