Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Toward the optimization of double-pulse LIBS underwater: effects of experimental parameters on the reproducibility and dynamics of laser-induced cavitation bubble

Not Accessible

Your library or personal account may give you access

Abstract

Double-pulse laser-induced breakdown spectroscopy (LIBS) was recently proposed for the analysis of underwater samples, since it overcomes the drawbacks of rapid plasma quenching and of large continuum emission, typical of single-pulse ablation. Despite the attractiveness of the method, this approach suffers nevertheless from a poor spectroscopic reproducibility, which is partially due to the scarce reproducibility of the cavitation bubble induced by the first laser pulse, since pressure and dimensions of the bubble strongly affect plasma emission. In this work, we investigated the reproducibility and the dynamics of the cavitation bubble induced on a solid target in water, and how they depend on pulse duration, energy, and wavelength, as well as on target composition. Results are discussed in terms of the effects on the laser ablation process produced by the crater formation and by the interaction of the laser pulse with floating particles and gas bubbles. This work, preliminary to the optimization of the spectroscopic signal, provides an insight of the phenomena occurring during laser ablation in water, together with useful information for the choice of the laser source to be used in the apparatus.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Normalization of underwater laser-induced breakdown spectroscopy using acoustic signals measured by a hydrophone

Fuzhen Huang, Ye Tian, Ying Li, Wangquan Ye, Yuan Lu, Jinjia Guo, and Ronger Zheng
Appl. Opt. 60(6) 1595-1602 (2021)

Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water

Xiao Chen, Rong-Qing Xu, Jian-Ping Chen, Zhong-Hua Shen, Lu Jian, and Xiao-Wu Ni
Appl. Opt. 43(16) 3251-3257 (2004)

Laser-induced plasma in water at high pressures up to 40 MPa: A time-resolved study

Ye Tian, Ying Li, Lintao Wang, Fuzhen Huang, Yuan Lu, Jinjia Guo, and Ronger Zheng
Opt. Express 28(12) 18122-18130 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved