Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Four-wave mixing in quantum dot semiconductor optical amplifiers

Not Accessible

Your library or personal account may give you access

Abstract

The theory of four-wave mixing (FWM) in the quantum dot (QD) semiconductor optical amplifiers (SOAs) is discussed by combining the QD rate equations system, the quantum-mechanical density-matrix theory, and the pulse propagation in QD SOAs including the three region of QD structure ground state (GS), excited state (ES), and wetting layer. Also, relations for differential gain, gain integral, and nonlinear susceptibility of both pump, probe, and signal pulses were discussed. Gain and differential gain have been calculated for QD structure. FWM efficiency and its components [spectral hole burning (SHB), carrier heating, and carrier density pulsation] are calculated. It is found that inclusion of ES in the formulas and in the calculations is essential since it works as a carrier reservoir for GS. It is found that QD SOA with enough capture time from ES to GS will reduce the SHB component, and so it is suitable for telecommunication applications that require symmetric conversion and independent detuning.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhancement of gain recovery rate and cross-gain modulation bandwidth using a two-electrode quantum-dot semiconductor optical amplifier

Yu Yi, Huang Lirong, Xiong Meng, Tian Peng, and Huang Dexiu
J. Opt. Soc. Am. B 27(11) 2211-2217 (2010)

Enhanced four-wave mixing in quantum cascade semiconductor optical amplifier

Baktash Hekmat, Vahid Ahmadi, and Elham Darabi
Appl. Opt. 52(12) 2828-2833 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (59)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved