Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Speckle reduction using an artificial neural network algorithm

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents an algorithm for reducing speckle noise from optical coherence tomography (OCT) images using an artificial neural network (ANN) algorithm. The noise is modeled using Rayleigh distribution with a noise parameter, sigma, estimated by the ANN. The input to the ANN is a set of intensity and wavelet features computed from the image to be processed, and the output is an estimated sigma value. This is then used along with a numerical method to solve the inverse Rayleigh function to reduce the noise in the image. The algorithm is tested successfully on OCT images of Drosophila larvae. It is demonstrated that the signal-to-noise ratio and the contrast-to-noise ratio of the processed images are increased by the application of the ANN algorithm in comparison with the respective values of the original images.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Intelligent estimation of noise and blur variances using ANN for the restoration of ultrasound images

Muhammad Shahin Uddin, Kalyan Kumar Halder, Murat Tahtali, Andrew J. Lambert, Mark R. Pickering, Margaret Marchese, and Iain Stuart
Appl. Opt. 55(31) 8905-8915 (2016)

Speckle noise reduction algorithm for optical coherence tomography based on interval type II fuzzy set

Prabakar Puvanathasan and Kostadinka Bizheva
Opt. Express 15(24) 15747-15758 (2007)

Stochastic speckle noise compensation in optical coherence tomography using non-stationary spline-based speckle noise modelling

Andrew Cameron, Dorothy Lui, Ameneh Boroomand, Jeffrey Glaister, Alexander Wong, and Kostadinka Bizheva
Biomed. Opt. Express 4(9) 1769-1785 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved