Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effects of nonlocal plasmons in gapped graphene micro-ribbon array and two-dimensional electron gas on near-field electromagnetic response in the deep subwavelength regime

Not Accessible

Your library or personal account may give you access

Abstract

A self-consistent theory involving Maxwell’s equations and a density-matrix linear-response theory is solved for an electromagnetically coupled doped graphene micro-ribbon array (GMRA) and a quantum well (QW) electron gas sitting at an interface between a half-space of air and another half-space of a doped semiconductor substrate, which supports a surface-plasmon mode in our system. The coupling between a spatially modulated total electromagnetic (EM) field and the electron dynamics in a Dirac-cone of a graphene ribbon, as well as the coupling of the far-field specular and near-field higher-order diffraction modes, are included in the derived electron optical-response function. Full analytical expressions are obtained with nonlocality for the optical-response functions of a two-dimensional electron gas and a graphene layer with an induced bandgap, and are employed in our numerical calculations beyond the long-wavelength limit (Drude model). Both the near-field transmissivity and reflectivity spectra, as well as their dependence on different configurations of our system and on the array period, ribbon width, graphene chemical potential of QW electron gas and bandgap in graphene, are studied. Moreover, the transmitted E-field intensity distribution is calculated to demonstrate its connection to the mixing of specular and diffraction modes of the total EM field. An externally tunable EM coupling among the surface, conventional electron-gas and massless graphene intraband plasmon excitations is discovered and explained. Furthermore, a comparison is made between the dependence of the graphene-plasmon energy on the ribbon’s width and chemical potential in this paper and the recent experimental observation given by [Nat. Nanotechnol. 6, 630 – 634 (2011)] for a GMRA in the terahertz-frequency range.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Discrete plasmonic Talbot effect in single-mode graphene ribbon arrays

Lei Wang, Yonglei Jia, and Zhichao Ji
Appl. Opt. 56(36) 9998-10002 (2017)

Plasmon resonances in a stacked pair of graphene ribbon arrays with a lateral displacement

Meng-Dong He, Gui Zhang, Jian-Qiang Liu, Jian-Bo Li, Xin-Jun Wang, Zhen-Rong Huang, Lingling Wang, and Xiaoshuang Chen
Opt. Express 22(6) 6680-6690 (2014)

Graphene ribbons for tunable coupling with plasmonic subwavelength cavities

Gilles Rosolen and Bjorn Maes
J. Opt. Soc. Am. B 31(5) 1096-1102 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (75)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.